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From the Hiickel model to effective-medium theory
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Abstract. The cnergy of an atom as a function of all topographically difierent configu-
rations of its nearest neighbours in the whole range of coordination in the Fcc lattice
is calculated using a simple Hilckel Hamiltonian. The result follows closely the square-
root dependence of the coordination number. The implications of this result in the
effective-medium theory of metals are discussed.

1. Introduction

The approximate ‘embedded-atom’ (EAM [1] and related methods [2, 3]) or ‘effective-
medium’ (EMT) [4-6] schemes have made available a new way of modelling the
energetics of metals in a form suitable for computer simulation of finite-temperature
phenomena. They overcome the difficulties inherent in classical pair potentials of
describing the many-atom features of electronic cohesion, which manifest themselves
in defect energies, elastic properties and in the surface structure [7]. All the re-
cent models [1-5] can be written in a common form having two principally different
constituents in the total energy E of a metallic system of N atoms:

N 1
E=ZF("€)+§ZZV("U) €Y
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where F' is a non-linear cohesive function depending on a local quantity p; at the
atomic site ¢ and V' has the form of a classical pair potential. The derivation and
interpretation of the two parts in the total energy expression vary considerably from
one model to another. For example, in the EAM-related model of Finnis and Sinclair
[2], F < /p, and p is interpreted as a sum of squares of overlap integrals. In EMT [5],
on the other hand, F is interpreted as the energy change when an atom is embedded
in a homogeneous electron gas having an uniform density of p. This reflects in a way
the possibility of dividing the metallic ‘bonding’ into the d—d interaction part, or s-d
or s—p hybridization parts among transition, noble and simple metals [8-12].

The purpose of this work is to introduce a simple model where we can compare
the effective-medium results with the exact results calculated within the same model.
For that purpose we use the nearest-neighbour Hickel Hamiltonian and the method
of moments. The energy of an atom is calculated as a function of all topographically
different configurations of its nearest neighbours in the whole range of coordination
in the FCC lattice. The weighted, averaged energy curve is shown to follow closely
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the square-root dependence of coordination, which is predicted by the tight-binding
theory. As our mode] system is best suited to describing s-type one-electron states
of a real metal, this calculation introduces 2 new way of approximating the error
made in the omitting of the one-electron energy term in the effective-medium theory.
Furthermore, we can estimate the effect of more distant neighbours in the defect
energies.

We continue by describing briefly our calculational method in section 2 and dis-
cussing the results in section 3. Conclusions are made in section 4.

2. Model and method

We consider the simplest possible case of crystal binding in the tight-binding theory:
one s-type orbital per lattice site forming an s band. The interaction between lattice
sites is determined via the nearest-neighbour Hiickel Hamiltonian:

H=Y hyldil (i) =4

hij = =1 when i, j are nearest neighbours (2)

h,. =0 elsewhere.

With this model Hamiltonian it is easy to calculate the moments ,u.S“J of the local
density of states g;(€) [8]:

W = [ gl de = GHM = S5 GLENGIHIGA - HI. ()
oo 2

Graphically the calculation of u{™) involves n linked steps via nearest neighbours in
the lattice starting and ending at sitc ;. We have constructed the Jocal density of
states of its moments up to u{®) by using a polynomial expansion

9
gi(e) = A‘l(e - Emin)llz + Z Am(e - ernin)m (4)

m=2

where ¢, is the bottom of the band. While our method is not capable of extracting
the fine structure of g(¢) of p{»), it is adequate for producing the energy of an atom,
defined as

F
Fi= [ eale)de ®
fmim
where ¢ is the Fermi energy of the system. The total energy of the system is then

E=) F,. (6)

If F; depends only on the coordination number of the atom : we recover the first
termt in (1) and the pair potential term is not needed. For simplicity, we make the
calculations non-self-consistently by keeping the Fermi energy in (5) fixed at its bulk
value in all situations.
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3. Results and discussion

The cohesive energy per atom in an ideal FCC lattice is shown in figure 1 as a function
of the order of the moment expansion (4) used in the calculation of the local density
of states. We see that when going beyond the third moment the cohesive energy
per atom changes by less than one per cent, This validates to some extent the wide
use of the second-moment approximation in describing of the cohesive band energy
in the tight-binding theory [2, 10] and also shows that our polynomial expansion (4)
is adequate for the present calculation, where only the cohesive energy (being an
average property of the band) is of interest. Note that in our FCC case the local
density of states is asymmetric. Previously it has been shown [13] that the cohesive
energy for a symmetric band (such as in $C or BCC) can be obtained within a few per
cent using the first four moments of the local density of states.
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Figure 1. The energy per atom {HU) in a perfect  Figure 2. The energy F of an atom as a func-
FCC lattice as a function of the order of the moment  tion of all topographically different configurations
expansion. The exact value for an Fcc lattice is  of ils nearest neighbours in the whole coordi-
—2.62 HU. nation range 1 € C; £ 12 in the pcc lattice
(dots). The solid curve is the weighted, averaged
F(Cy) and the dashed curve is a one-parameter

fit F = —(2.62//12)/C1.

The main result of this paper is presented in figure 2, which shows the energy of
an atom in an FCC lattice as a function of all topographically different configurations
of its nearest neighbours in the whole coordination range 1 £ C; £ 12. The number
of different possibilities for making vacancies in the vicinity of an atom in the FCC
lattice for different values of C, are tabulated in table 1. Figure 2 clearly shows a
smooth, non-linear, many-atom dependence of C;, which is in fact not very far from
the simple one-parameter fit to the square-root function, shown also in the same
figure.

The deviation of the points around the weighted, averaged F'(C,) curve in figure 2
is maximal (about 5%) at around C; = 6, as would be expected from table 1. In the
present model, this deviation can be regarded as a measure of intrinsic directionality
bonding effects. It must be noted, however, that at low coordination our system is
quite unrealistic. In the limit of C; = 1, the system consists of an atom having only
one other atom within the nearest-neighbour radius, beyond which there exists an
ideal Fcc lattice.
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Figure 3. The energy £ of an atom when C; is  Figure 4. The effect of a vacancy on the energy of

fixed at 11 or 12 and C is varied from 1 to 6 in  the first six neighbouring shells in the FCC lattice.

a FCC lattice. The (negative of) the bulk cohesive energy —2.62
HU is shown for comparison.

We can study the effect of the next-nearest neighbours on the cohesive energy
by fixing C,; and varying C, from 1 to 6 in FCC lattice. We have done this for
C, = 11,12 and the results are shown in figure 3. The proportional effect of the
next-nearest neighbours on the cohesive energy is seen to be of the same order of
magnitude (5%) as the effect arising from the directionality in the nearest-neighbour
bonds.

Table 1. The number N of topographically different ways to place the nearest neighbours
around an atom in the FcC lattice. The second column shows N in the case where Cy
is varied from 1 to 12, and the fourth and the fifth columns show N in the cases where
Cy is varied from | to 6 and C; is fixed to 12 and 1], respectively. The situation is
symmetric with respect to Cy =6 and Cy = 3.
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The results in figpures 2 and 3 show that the total energy in the Hiickel model
mainly depends on the coordination numbers of atoms. This gives further support
to the EAM/EMT methods. In particular, the results indicate that the sum over the
one-electron eigenvalues in the effective-medium theory can be incorporated in the
cohesive function [1, 4, 5] and that the error made in doing so is small in most
cases. However, the variation of the energy with topology becomes important in
small clusters [14] where the effects of discrete one-clectron energy levels have to be
explicitly included in the effective-medium theory.

For calculating defect energies we parametrize the cohesive energy function in
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Table 2. Defect energies calculated using the Hickel model in the FCC lattice. o111, o100
and oy are the surface energies for the three basic faces of Fcc, o¥iF is the surface
energy for an {1 % 2} missing-row reconstructed {110) face and Evp 1s the vacancy
formation energy. The surface energies are given in Hiickel units x a~% (a is the Acc
lattice parameter). For comparison, the cohesive energy per atom E..y is also given.
The ‘exact’ results are obtained by direct lattice summations involving moments up to
p(8), The second and the third columns show the results from the parametrized model
{7) taking into consideration the changes in C; and Cj, C3, respectively. The ‘exact’
vacancy formation energy has been calculated by taking into consideration the energy
changes around the vacancy up to the sixth shell (see¢ figure 4).

Exact FE=A/C E=A/C1+ BC;

em (HU a=2) 076 0.81 0.64
o0 (HU 2—2) 1.00 0.96 0.76
9'110 (HU a 2) 1.01 1.03 0.89
oeMF (HU a—?) 098 1.02 0.85
Evr (HU) 1.08 1.34 1.19
Econ (HU) 2.62 2.62 2.62

the Fcc lattice in terms of the number of nearest and next-nearest neighbours as

-

F(C,, Cy) = AVC, + BC, )]

where A = —0.756, B = 0.025 and C|, C, are the corresponding coordination
numbers. Equation (7) gives the energy in Hiickel units (HU), which are defined
by fixing the nearest-neighbour interaction energy as unity in (2). In Hiickel units,
the cohesive energy per atom in a perfect FCC lattice is 2.62. The linear coefficient
B is determined from the data shown in figure 3. We have calculated (table 2)
the vacancy formation energy, the surface energy for (100), (110) and (111) faces of
the FCc lattice, as well as the energy for the (1 x 2) missing-row reconstructed (110)
surface. For comparison we have given also the ‘exact’ values calculated directly using
moments up to p®. It is seen that the simple /C; dependence gives the surface
energies quite well but overestimates the vacancy formation energy by 25%. The
inclusion of the next-nearest neighbours brings the vacancy formation energy nearer
to the ‘exact’ value, but makes the surface energies worse. This may reflect the fact
that our parametrization (7), made on the basis of near-bulk coordination, is not
adequate for describing energetics of surface atoms. Another interpretation would
be that the total energy is not easily separable into parts arising from the nearest,
next-nearest etc contributions [8). In fact, our model may lead to ‘Friedel oscillations’
in surface energies if more and more distant neighbours were to be included, as
illustrated in figure 4 for the vacancy formation energy.

Our model stabilizes the (1 x 2) missing-row reconstructed (110) surface with
respect to the unreconstructed (110). For the /C| model this is not a surprise, since
the reconstruction energy has been shown to be proportional to the negative of the
curvature in the cohesive function and is then always negative in EAM/EMT models with
only nearest-neighbour interactions [15]. The inclusion of the next-nearest neighbours
does not make the situation more realistic, as in our expression (7} the energy rises
as a function of increasing C,, which leads to the pegative formation energy for the
step in the (1 x 2)(110) surface [15].
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4, Conclusions

The energy of an atom as a function of all topographically different configurations of
its nearest neighbours in the FCC lattice has been calculated using a simple Hiicke!
Hamiltonian and the method of moments. The calculation leads to a non-linear en-
ergy function, where the leading term can be described well by the \/CT1 dependence
from the second-moment approximation in the tight-binding theory. The present
model] allows the estimation of the effects arising from the one-electron energy levels
in the cohesive energy as well as the effects from more distant neighbours to the
defect energies.

Acknowledgments

Discussions with Seppo Valkealahti are gratefully acknowledged. This work was sup-
ported by the Emil Aaltonen Foundation (HH) and by the Academy of Finland
(M)

References

[1] Daw M S 1989 Phys Rev B 39 7441
{2] Finnis M W and Sinclair J E 1984 Phil Mag A 50 45
[3] Ercolessi F, Parrincllo M and Tosatti E 1988 Phil Mag A 58 213
[4] Manninen M 1986 Phys. Rev: B 34 8486
[5) Jacobsen K W, Negrskov T K and Puska M J 1987 Phys. Rev B 35 7423
[6] Kress I D and DePristo A E 1987 J. Chem. Phys. 87 4700 :
[7] Nieminer R M, Puska M J and Manninen M J (ed) 1990 Many-Aiom Im:racnom in Solids (Betlin:
Springer)
[8] Heine V 198G Solid State Physics ed H Ehrenreich, F Seitz and D Turnbull (New York: Academic)
[9] Heine V and Hafner J 1990 Many-Atom Interactions in Solids ed R M Nieminen, M I Puska and
M Y Manninen (Berlin: Springer)
[10] Pettifor D G 1990 Mony-Atom Interactions in Solids ed R M Nieminen, M J Puska and M J
Manninen (Berlin: Springer)
[11] Carlsson A E and Ashcroft N W 1983 Phys. Rew. B 27 2101
[12] Christensen N E and Heine V 1985 Phys Rev B 32 6145
[13] Brown R H and Carlsson A E 1985 Phys Rev. B 32 6125
[14] Christensen O B, Jacobsen K W, Ngrskov J K and Manniner M 1991 Phys. Rew Len. 66 2219
[15] Hiékkinen H, Merikoski J and Manninen M 1991 1 Phys: Condens. Matter 3 2755



