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From the Huckel model to effective-medium theory 
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Department of Physics, University of Jyiskyli, SF-40351 .Ip%kyl& Flnland 

Received 21 May 1991 

AbsirneL The energy of an atom as a function of all topographidy diiiereot mnfigu- 
rations of its nearest neighbours in the whole range of modination in the FCC lattice 
is calculated using a simple HClckel Hamiltonian. The result follows clmely the quare- 
root dependence of the coordination number. The implications of this mul l  in the 
elfective-medium theory of metals are discussed. 

I. Introduction 

The approximate ‘embedded-atom’ (m [l] and related methods 12, 31) or ‘effective- 
medium’ (EMT) [U] schemes have made available a new way of modelling the 
energetics of metals in a form suitable for computer simulation of finite-temperature 
phenomena. They overcome the difficulties inherent in classical pair potentials of 
describing the many-atom features of electronic cohesion, which manifest themselves 
in defect energies, elastic properties and in the surface structure [7]. All the re- 
cent models [l-51 can be written in a common form having two principally different 
constituents in the total energy E of a metallic system of N atoms: 

where F is a non-linear cohesive function depending on a local quantity pi at the 
atomic site i and V has the form of a classical pair potential. The derivation and 
interpretation of the two parts in the total energy expression vary considerably from 
one model to another. For example, in the U - r e l a t e d  model of Finnis and Sinclair 
[Z], F 0: f i ,  and pis interpreted as a sum of squares of overlap integrals. In E m  [SI, 
on the other hand, F is interpreted as the energy change when an atom is embedded 
in a homogeneous electron gas having an uniform density of p. This reflects in a way 
the possibility of dividing the metallic ‘bonding’ into the d-d interaction part, or s-d 
or s-p hybridization parts among transition, noble and simple metals 18-12]. 

The purpose of this work is to introduce a simple model where we can compare 
the effective-medium results with the exact results calculated within the same model. 
For that purpose we use the nearest-neighbour Hiickel Hamiltonian and the method 
of moments. The energy of an atom is calculated as a function of all topographically 
different configurations of its nearest neighbours in the whole range of coordination 
in the FCC lattice. The weighted, averaged energy curve is shown to follow closely 
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the square-root dependence of coordination, which is predicted by the tight-binding 
theory. As OUT model system is best suited to describing s-type one-electron states 
of a real metal, this calculation introduces a new way of approximating the error 
made in the omitting of the one-electron energy term in the effective-medium t h e q .  
Furthermore, we can estimate the effect of more dbtant neighbours in the defect 
energies. 

We continue by describing briefly our calculational method in section 2 and dis- 
cussing the results in section 3. Conclusions are made in section 4. 

2. Model and method 

We consider the simplest possible case of crystal binding in the tight-binding theory: 
one s-type orbital per lattice site forming an s band. The interaction between lattice 
sites is determined via the nearest-neighbour Huckel Hamiltonian: 

H = z h i j l i ) ( j l  

h . . = -1 

h . .  = 0 elsewhere. 

(ilj) = S i j  
i , j  

when i, j are nearest neighbours 
' J  

*J 

With this model Hamiltonian it is easy to calculate the moments pi"' of the local 
density of states s i (€ )  IS]: 

Graphically the calculation of p(") involves n linked steps via nearest neighbours in 
the lattice starting and ending at site i. We have constructed the local density of 
states of its moments up to p(') by using a polynomial expansion 

9 

si(€) = Ai(€ - ~ , , , i ~ ) ' ' ~  + Am(€ - €,,,in)'" (4) 
m=2 

where emin is the bottom of the band. While our method is not capable of extracting 
the fine structure of g ( r )  of ~ ( " 1 ,  it is adequate for producing the energy of an atom, 
defined as 

where cF is the Fermi energy of the system. 'Ihe total energy of the system is then 

E = z F i .  
i 

If Fi depends only on the coordination number of the atom i we recover the first 
term in (1) and the pair potential term is not needed. For simplicity, we make the 
calculations non-selfconsistently by keeping the Fermi energy in (5) fixed at its bulk 
value in all situations. 
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3. Results and discussion 

The cohesive energy per atom in an ideal Fcc lattice is shown in figure 1 as a function 
of the order of the moment expansion (4) used in the calculation of the local density 
of states. We see that when going beyond the third moment the cohesive energy 
per atom changes by less than one per cent. This validates to some extent the wide 
use of the second-moment approximation in describing of the cohesive band energy 
in the tight-binding theory [2, 101 and also shows that our polynomial expansion (4) 
is adequate for the present calculation, where only the cohesive energy (being an 
average property of the band) is of interest Note that in our FCC case the local 
density of states is asymmetric. Previously it has been shown [13] that the cohesive 
energy for a symmetric band (such as in SC or BCC) can be obtained within a few per 
cent using the first four moments of the local density of States 
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Figure 1. The energy per atom (HU) in a perfect Figure 2. The energy F of an atom as a func- 
FCC lattice as a function of the order of the moment tion of all topographically diffemt configurations 
apansion. The exact value for an FcC lattice is of its nearest neighboun in the whole mordi- 
-2.62 Hu. nation range 1 < C1 < 12 in the P c c  lattice 

(dots). The solid cum is the weighted, averaged 
F(C1) and the dashed curve b a one-parameter 
fit F = - ( 2 . 6 2 / a ) & .  

The main result of this paper is presented in figure 2, which shows the energy of 
an atom in an FCC lattice as a function of all topographically different configurations 
of its nearest neighbours in the whole coordination range 1 4 C, 4 12. The number 
of different possibilities for making vacancies in the vicinity of an atom in the FCC 
lattice for different values of C, are tabulated in table 1. Figure 2 clearly shows a 
smooth, non-linear, many-atom dependence of C,, which is in fact not very far from 
the simple one-parameter fit to the square-root function, shown also in the same 
figure. 

The deviation of the points around the weighted, averaged F(C,) cuwe in figure 2 
is maximal (about 5%) at around C, = 6, as would be expected from table 1. In the 
present model, this deviation can be regarded as a measure of intrinsic directionality 
bonding effects. It must be noted, however, that at low coordination our system is 
quite unrealistic. In the limit of C, = 1, the system consists of an atom having only 
one other atom within the nearest-neighbour radius, beyond which there exists an 
ideal FCC lattice. 
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e2 Shell 

Flym 3. The energy F of an atom when Ct is 
Kxed at 11 or 12 and CZ is varied from 1 to 6 in 
a FCC latlice. 

P l y r e  4. The effecl of a vacancy on the energy of 
lhc first six neighbouring ahells in the FCC lattice. 
The (negative 00 lhc bulk cohesive energy -2.62 
HU is shown for comparison. 

We can study the effect of the next-nearest neighbours on the cohesive energy 
by fixing C, and varying C, from 1 to 6 in FCC lattice. We have done this for 
C, = 11,12 and the results are shown in figure 3. The proportional effect of the 
next-nearest neighbours on the cohesive energy is seen to be of the same order of 
magnitude (5%) as the effect arising from the directionality in the nearest-neighbour 
bonds. 

Table 1. The number N of topographically different ways to place the nearest neighbours 
around an atom in the pcc lattice. The second column shows N in lhc case where C1 
is varied from 1 to 12, and the foulth and the fifth m l u m  show N in the cas- where 
Cz is varied from 1 U, 6 and Ct is Kxed to 12 and 11, rapeclively. The situalion is 
symmetric with respect to C t  = 6 and Cz = 3. 

C1 N C2 N ( C , =  12) N ( C t =  11) 

1 1 1  1 
2 4 2  2 

3 
7 

3 9 3  2 8 
4 16 
5 24 
6 2 8  

The results in figures 2 and 3 show that the total energy in the Hiickel model 
mainly depends on the coordination numbers of atoms. This gives further support 
to the WMT methods. In particular, the results indicate that the sum over the 
one-electron eigenvalues in the effective-medium theory can be incorporated in the 
cohesive function [I, 4, 51 and that the error made in doing so is small in most 
cases. However, the variation of the energy with topology becomes important in 
small clusters [14] where the effecLs of discrete oneelectron energy levels have to be 
explicitly included in the effective-medium theory. 

For calculating defect energies we parametrize the cohesive energy function in 
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Table 2. Defect energies calculated using the Hiickel model in the pcc lattice cwi, 0100 
and 0110 arc the surface energies for the three basic faces of PCC. mgF is the surface 
energy for an (1 x 2) missing-mnv reeonsttucled (110) face and EVF is the vacancy 
formation energy. The surface e n e e s  arc given in HGckel units x a-2 (a is the P c c  
lattice parameter). For comparison, the cohesive energy per atom %.,,I, is also given. 
Thc ‘ a c t ’  results are obtained by direct lattice summations involving moments up to 
p @ ) .  The m n d  and the third columns show the results from the parametrized model 
(7) taking into consideration the changes in C1 and C1, Cz, trspectively. The ‘aact’ 
vacancy formation energy has been calculated by taking into consideration the energy 
changes around the vacancy up to the sixth shell (see figure 4). 

(HV CZ) 0.76 oai 0.64 

0110 (HU cl-’) 1.01 1.03 0.89 
.#p (HU a-*) 0.98 1.02 0.85 
EVF (HU) 1.08 134 1.19 

rim (w a-?) 1.00 0.96 0.76 

Ecob (W 262 2.62 2.62 

the FCC lattice in terms of the number of nearest and next-nearest neighbours as 

where A = -0.756, B = 0.025 and C,, C, are the corresponding coordination 
numbers. Equation (7) gives the energy in Hiickel units (HU), which are defined 
by fixing the nearest-neighbour interaction energy as unity in (2). In Hiickel units, 
the cohesive energy per atom in a perfect FCC lattice is 2.62. The linear coefficient 
B is determined from the data shown in figure 3. We have calculated (table 2) 
the vacancy formation energy, the surface energy for (loo), (110) and (111) faces of 
the FCC lattice, as well as the energy for the (1 x 2) missing-row reconstructed (110) 
surface. For comparison we have given also the ‘exact’ values calculated directly using 
moments up to P ( ~ ) .  It is seen that the simple dependence gives the surface 
energies quite well but overestimates the vacancy formation energy by 25%. The 
inclusion of the next-nearest neighbours brings the vacancy formation energy nearer 
to the ‘exact’ value, but makes the surface energies worse. This may reflect the fact 
that our parametrization (7), made on the basis of near-bulk coordination, is not 
adequate for describing energetics of surface atoms. Another interpretation would 
be that the total energy is not easily separable into parts arising from the nearest, 
next-nearest etc contributions [SI. In fact, our model may lead to ‘Friedel oscillations’ 
in surface energies if more and more distant neighbours were to be included, as 
illustrated in figure 4 for the vacancy formation energy. 

Our model stabilizes the (1 x 2) missing-row reconstructed (110) surface with 
respect to the unreconstructed (110). For the 6 model this is not a surprise, since 
the reconstruction energy has been shown to be proportional to the negative of the 
curvature in the cohesive function and is then always negative in EAM/EMT models with 
only nearest-neighbour interactions [15]. The inclusion of the next-nearest neighbours 
does not make the situation more realistic, as in our expression (7) the energy rises 
as a function of increasing C,, which leads to the negative formation energy for the 
step in the (1 x 2)(110) surface [a]. 
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4. Conclusions 

The energy of an atom as a function of all topographically different coniigurations of 
its nearest neighbours in the FCC lattice has been calculated using a simple Huckel 
Hamiltonian and the method of moments. The calculation leads to a non-linear en- 
ergy function, where the leading term can be described well by the & dependence 
from the second-moment approximation in the tight-binding theory. The present 
model allows the estimation of the effects arising from the one-electron energy levels 
in the cohesive energy as well as the effects from more distant neighbours to the 
defect energies. 
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